Magnetophoresis at the nanoscale: tracking the magnetic targeting efficiency of nanovectors

Author:

Andriola Silva Amanda K1,Di Corato Riccardo12,Gazeau Florence1,Pellegrino Teresa23,Wilhelm Claire4

Affiliation:

1. Laboratoire Matière & Systèmes Complexes, UMR 7057, CNRS & Université Paris Diderot, 10 rue Alice Domon & Léonie Duquet, 75205 Paris cedex 13, France

2. Instituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy

3. Nanoscience Institute of CNR, National Nanotechnology Laboratory, Via Arnesano, 73100 Lecce, Italy

4. Laboratoire Matière & Systèmes Complexes, UMR 7057, CNRS & Université Paris Diderot, 10 rue Alice Domon & Léonie Duquet, 75205 Paris cedex 13, France.

Abstract

Aim: Most of the research efforts in magnetic targeting have been focused on the development of magnetic nanovectors, while the investigation of methods for tracking their magnetic targeting efficiency remains inappropriately addressed. We propose herein a miniaturized approach for appraising magnetophoretic mobility at the nanoscale. Materials & methods: A simple and easy-to-use chamber including a microtip as a magnetic attractor was developed to perform magnetophoretic measurement at the size scale of nano-objects, and under bright field or fluorescence microscopy. Different sets of magnetic nanocontainers were produced and their magnetophoretic mobility was investigated. Real-time observations of the Brownian motion of the nanocontainers were also carried out for simultaneous size determination. Results: Attraction of the nanocontainers at the microtip is demonstrated as a qualitative method that immediately distinguishes magnetically responsive nano-objects. The combination of the analysis of Brownian motion, together with the magnetophoretic mobility, inferred both the size, the magnetophoretic velocity and the magnetic content of the nanocontainers. Additionally, nanomagnetophoresis experiments under fluorescence microscopy provided information on the constitutive core/shell integrity of the nanocontainers and the co-internalization of a fluorescent cargo. Conclusion: This nanomagnetophoresis method represents a promising tool to estimate the feasibility of magnetic targeting in laboratory routine. Original submitted 28 November 2011; Revised submitted 28 February 2012; Published online 18 June 2012

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3