Tiopronin monolayer-protected silver nanoparticles modulate IL-6 secretion mediated by Toll-like receptor ligands

Author:

Castillo Paula M1,Herrera Juan L2,Fernandez-Montesinos Rafael2,Caro Carlos1,Zaderenko Ana P1,Mejías Jose A1,Pozo David2

Affiliation:

1. Department of Physical, Chemical & Natural Systems, Pablo de Olavide University, Carretera de Utrera Km 1, 41013 Seville, Spain

2. CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine (CSIC - University of Seville - UPO - Junta de Andalucia), Americo Vespucio Avenue, Parque Cientifico y Tecnológico Cartuja 93, 41092, Seville, Spain

Abstract

Aims: Capped silver nanoparticles that can be coupled to a variety of molecules and biomolecules are of great interest owing to their potential applications in biomedicine. However, there are no data about their toxicity or functional effects on a key innate immune response, such as IL-6 secretion, after the engagement of the main group of pathogen-associated molecular patterns receptors, that is, the Toll-like receptors (TLRs). Materials & methods: N-(2-mercaptopropionyl)glycine (tiopronin)-capped silver (Ag@tiopronin) nanoparticles of a narrow sized distribution (∼5 nm) were synthesized and characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, Raman, 1H–NMR and total correlation spectroscopy. Cytotoxicity was determined by lactate deshidrogenase and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium assays in Raw 264.7 macrophages. IL-6 was measured by ELISA. Results & discussion: Ag@tiopronin nanoparticles have a narrow size distribution (≈5 nm), high solubility and stability in aqueous environment with no cytotoxicity in terms of mitochondrial function or plasma-membrane integrity at concentrations as high as 200 µg/106 cells. Ag@tiopronin nanoparticles were not proinflammatory agents, but remarkably they specifically impaired the IL-6 secretion mediated by TLR2, TLR2/6, TLR3 or TLR9 stimulation in co-treatment experiments. However, in pretreatment experiments, nanoparticles enhanced the susceptibility of macrophages to inflammatory stimulation mediated by TLR2/1 and TLR2/6 specific ligands while severely impairing the IL-6 secretion activated by the TLR3 or TLR9 ligands. Conclusions: Contrary to what is found for bare silver nanoparticles, Ag@tiopronin nanoparticles are noncytotoxic to macrophages. Ag@tiopronin nanoparticles showed differential effects on TLR signaling of a high degree of specificity, without proinflammatory effects by themselves. These effects have to be borne in mind when using bioconjugates of Ag@tiopronin nanoparticles for future medical applications.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3