Affiliation:
1. Department of Chemical & Materials Engineering, University of Dayton, 300 College Park, Dayton, OH 45469, USA.
Abstract
Recent studies on carbon nanomaterials for biological applications revealed that carbon nanodiamonds are much more biocompatible than most other carbon nanomaterials, including carbon blacks, fullerenes and carbon nanotubes. The noncytotoxic nature of nanodiamonds, together with their unique strong and stable photoluminescence, tiny size, large specific surface area and ease with which they can be functionalized with biomolecules, makes nanodiamonds attractive for various biomedical applications both in vitro and in vivo. In this article, we present some of the important issues concerning the synthesis and surface functionalization of diamond nanoparticles for nanomedicine as well as an overview of the recent progress in this exciting field by focusing on the potential use of nanodiamonds and their derivatives for single particle imaging in cells, drug delivery, protein separation and biosensing.
Subject
Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
195 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献