Functionalized mesoporous silica nanoparticle-based drug delivery system to rescue acrolein-mediated cell death

Author:

Cho Youngnam1,Shi Riyi12,Borgens Richard B12,Ivanisevic Albena23

Affiliation:

1. Purdue University, Center for Paralysis Research, School of Veterinary Medicine, West Lafayette, IN 47907, USA

2. Purdue University, Weldon School of Biomedical Engineering, West Lafayette, IN 47907, USA

3. Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA.

Abstract

Aims: Mesoporous silica nanoparticles (MSNs) were prepared and characterized to develop a drug delivery system by loading them with hydralazine and functionalizing them with polyethylene glycol. These agents restore damaged cell membranes and ameliorate abnormal mitochondria behavior induced by the endogenous toxin acrolein. Such a formulation shows potential as a novel therapeutic agent. Results & discussion: MSNs with encapsulated hydralazine and covalently linked with polyethylene glycol were subsequently synthesized and characterized by transmission-electron microscopy, N2 adsorption/desorption, x-ray diffraction and UV–vis spectroscopy. MSNs exhibited large surface area, pore volume and tunable pore size. The mean particle size was 100 nm and hydralazine encapsulation efficiency was almost 25%. These were tested using PC12 in culture to restore their disrupted cell membrane and to improve mitochondria function associated with oxidative stress after exposure to acrolein. Lactate dehydrogenase, MTT, ATP and glutathione assays were used to examine the physiological functioning of the samples and the loss of lactate dehydrogenase from the cytoplasm assayed the integrity of the membranes. These evaluations are sufficient to initially demonstrate drug delivery (concentrated hydralazine) into the compromised cells cytoplasm using the MSNs as a vehicle. Conclusion: MSNs modified with drug/polymer constructs provide significant neuroprotection to cells damaged by a usually lethal exposure to acrolein.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3