Novel synthesis of cerium oxide nanoparticles for free radical scavenging

Author:

Tsai Yi-Yang1,Oca-Cossio Jose2,Agering Kristina2,Simpson Nicholas E2,Atkinson Mark A3,Wasserfall Clive H3,Constantinidis Ioannis2,Sigmund Wolfgang1

Affiliation:

1. Department of Materials Science and Engineering, University of Florida, Gainesville, FL 6400, USA.

2. Division of Endocrinology, Department of Medicine, University of Florida, Gainesville, FL, USA.

3. Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 0275, USA.

Abstract

Aims: The aim of this article is to present a novel synthetic route to form CeO2 nanoparticles that protects against the detrimental influence of oxidative stress in mammalian cells. Methods: The noncytotoxic surfactant lecithin was used to synthesize CeO2 nanoparticles and the products were colloidally stabilized in a biocompatible tri-sodium citrate buffer. These nanoparticles were delivered into murine insulinoma βTC-tet cells, and intracellular free radical concentrations responding to exposure to hydroquinone were measured in a variety of extracellular CeO2 concentrations. Results: Well-dispersed, highly crystallized CeO2 nanoparticles of 3.7 nm in size were achieved that are chemically and colloidally stable in Dulbecco’s modified Eagle’s medium for extended periods of time. Treating βTC-tet cells with these nanoparticles alleviated detrimental intracellular free radical levels down to the primary level. Conclusion: CeO2 nanoparticles synthesized from this route are demonstrated to be effective free radical scavengers within βTC-tet cells. Furthermore, it is shown that CeO2 nanoparticles provide an effective means to improve cellular survival in settings wherein cell loss due to oxidative stress limits native function.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3