Understanding and re-engineering nucleoprotein machines to cure human disease

Author:

Dynan William1,Takeda Yoshihiko1,Roth David2,Bao Gang3

Affiliation:

1. Institute of Molecular Medicine & Genetics, Medical College of Georgia, Augusta, GA 30912, USA.

2. The Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.

3. Georgia Institute of Technology and Emory University, Department of Biomedical Engineering, Atlanta, GA 30332, USA.

Abstract

The mammalian nucleus is filled with self-organizing, nanometer-scale nucleoprotein machines that carry out DNA replication, RNA biogenesis and DNA repair. We discuss, as a model, the nonhomologous end-joining (NHEJ) machine, which repairs DNA double-strand breaks. The NHEJ machine consists of six core polypeptides and 10–20 ancillary polypeptides. A full understanding of its design principles will require measuring the behavior of single NHEJ complexes in living cells, using a Nano Toolbox that includes bright, stable, biocompatible fluorophores, efficient protein and nucleic acid-tagging strategies, and sensitive, high-resolution imaging methods. Taking inspiration from natural examples, it might be possible to adapt and redesign the NHEJ machine to precisely correct mutations responsible for common human diseases, such as K-ras in lung cancer or human papillomavirus E6 and E7 genes in cervical and oral cancers.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3