pH-triggered release of vancomycin from protein-capped porous silicon films

Author:

Perelman Loren A1,Pacholski Claudia2,Li Yang Yang3,VanNieuwenhze Michael S4,Sailor Michael J5

Affiliation:

1. Nitto Denko Technical Corp, Carlsbad, CA, USA.

2. Max-Planck-Institut für Metallforschung, Heisenbergstr. 3, 70569 Stuttgart, Germany.

3. City University of Hong Kong, Department of Physics & Materials Science, 83 Tat Chee Av., Kowloon, Hong Kong.

4. Indiana University, Department of Chemistry, 800 E. Kirkwood Avenue, Bloomington, IN 47401, USA.

5. University of California, Department of Chemistry & Biochemistry, San Diego, La Jolla, CA 92093, USA.

Abstract

Objective: An in vitro model system for pH-triggered release of the antibiotic vancomycin from porous Si films is studied. Method: Vancomycin is infused into a mesoporous Si film from a mixed aqueous/acetonitrile solution and trapped by a capping layer containing the protein bovine serum albumin (BSA). The protein effectively traps vancomycin in the porous nanostructure at pH 4.0; the protein dissolves and vancomycin is released into solution when the pH increases to 7.4. The surface chemistry of porous Si exerts a substantial effect on the efficacy of drug loading. The amount of drug loading is larger in freshly-etched (hydrophobic, hydrogen-terminated) porous Si and smaller in methyl-modified, undecylenic acid-modified and thermally oxidized samples. The quantity of drug loaded in a freshly etched porous Si chip is proportional to the thickness of the porous layer, which exhibits a constant volume loading efficiency of 31% (v/v). Flow-cell experiments designed to mimic the transition from pH 4 to 7 that occurs when material moves from the stomach to the upper intestinal tract were performed on the freshly etched films and vancomycin- and BSA-release rates were quantified from the effluent of the flow cell by high-pressure liquid chromatography analysis. Results & conclusion: There is a small, constant rate of vancomycin release at pH 4 that is independent of the amount of drug loaded in the pores. This is attributed to diffusion of vancomycin from the BSA-capping layer. The release rate increases five- to tenfold when the pH of the solution in the flow cell increases to 7.4; 100% of the drug is released within 3 h of this increase.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3