Novel biomarker panel for the diagnosis and prognosis assessment of sepsis based on machine learning

Author:

Wu Juehui1,Liang Jianbo1,An Shu1,Zhang Jingcong2,Xue Yimin3,Zeng Yanlin3,Li Laisheng1ORCID,Luo Jinmei2ORCID

Affiliation:

1. Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China

2. Department of Internal Medicine, Medical Intensive Care Unit & Division of Respiratory Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China

3. Department of Laboratory Medicine & Technology, Yunkang School of Medicine & Health, Nanfang University, Guangzhou, 510970, People's Republic of China

Abstract

Background: The authors investigated a panel of novel biomarkers for diagnosis and prognosis assessment of sepsis using machine learning (ML) methods. Methods: Hematological parameters, liver function indices and inflammatory marker levels of 332 subjects were retrospectively analyzed. Results: The authors constructed sepsis diagnosis models and identified the random forest (RF) model to be the most optimal. Compared with PCT (procalcitonin) and CRP (C-reactive protein), the RF model identified sepsis patients at an earlier stage. The sepsis group had a mortality rate of 36.3%, and the RF model had greater predictive ability for the 30-day mortality risk of sepsis patients. Conclusion: The RF model facilitated the identification of sepsis patients and showed greater accuracy in predicting the 30-day mortality risk of sepsis patients.

Funder

National Natural Science Foundation of China

Publisher

Future Medicine Ltd

Subject

Biochemistry (medical),Clinical Biochemistry,Drug Discovery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3