Anti-PD-L1-modified and ATRA-loaded nanoparticles for immuno-treatment of oral dysplasia and oral squamous cell carcinoma

Author:

Chen Xiao-Jie1,Zhang Xue-Qiong2,Tang Ming-Xiu2,Liu Qi3,Zhou Gang14ORCID

Affiliation:

1. The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China

2. School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China

3. Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA

4. Department of Oral Medicine, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China

Abstract

Aim: To develop nanomedicines for immuno-therapy of oral dysplasia and oral squamous cell carcinoma. Materials & methods: All-trans retinoic acid (ATRA)-poly(lactide-co-glycolide acid) (PLGA)-poly(ethylene glycol) (PEG)-programmed death-ligand 1 (PD-L1) nanomedicines were fabricated by loading ATRA into PLGA-PEG nanocarriers and modification using an anti-PD-L1 antibody. Results: ATRA-PLGA-PEG-PD-L1 nanoparticles showed fast cellular uptake, significantly inhibited proliferation and induced apoptosis in DOK and CAL27 cells. Moreover, in C3H tumor-bearing mice, ATRA-PLGA-PEG-PD-L1 nanoparticles more specifically targeted tumor cells, enhanced anticancer activity and reduced side effects when compared with free ATRA. Furthermore, CD8+ T cells were activated around PD-L1 positive cells in the tumor microenvironment after treatment. Conclusion: ATRA-PLGA-PEG-PD-L1 nanoparticles had low toxicity, high biocompatibility and specifically targeted oral dysplasia and squamous carcinoma cells both in vitro and in vivo.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3