Nanotechnology-based delivery systems in HIV/AIDS therapy

Author:

Shahiwala Aliasgar1,Amiji Mansoor M2

Affiliation:

1. Northeastern University, Department of Pharmaceutical Sciences, School of Pharmacy, 110 Mugar Life Sciences Building, Boston, MA 02115, USA

2. Northeastern University, Department of Pharmaceutical Sciences, School of Pharmacy, 110 Mugar Life Sciences Building, Boston, MA 02115, USA.

Abstract

The therapeutic efficacy of anti-HIV agents is often hampered by poor bioavailability and lack of drug penetration in infected target tissues and cells. Using different types of nanotechnology-based delivery systems, it is possible to engineer strategies that can improve the therapeutic efficacy in HIV/AIDS by delivering drugs to cellular and anatomical viral reservoirs. The rationale for the use of nanocarrier systems relies on the fact that different types of therapeutic payloads can be encapsulated and the systemic pharmacokinetics and distribution are dictated by the properties of the nanocarriers rather than the drugs. The versatility of nanoplatforms can be further exploited in a formulation that has enhanced oral bioavailability, protects against degradation upon oral or systemic administration and prolongs the residence time at the target site. Nanocarriers can facilitate lymphatic transport, delivery across the blood–brain barrier, and efficient internalization in cells by nonspecific or receptor-mediated endocytosis. In this review, we will address the role of nanotechnology-based delivery systems in improving the delivery efficiency of anti-HIV drugs to cellular and anatomical sites of interest. Specific published examples will be highlighted with emphasis on the role of polymeric nanoparticle micelles, liposomes and nanoemulsions in improving delivery efficiency.

Publisher

Future Medicine Ltd

Subject

Pharmacology (medical),Infectious Diseases,Virology,Drug Discovery,Pharmacology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3