Molecular mechanisms of HIV-1 resistance to nucleoside and nucleotide reverse transcriptase inhibitors

Author:

Sluis-Cremer Nicolas1

Affiliation:

1. University of Pittsburgh, School of Medicine, Division of Infectious Diseases, S817 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA.

Abstract

The nucleoside and nucleotide reverse transcriptase inhibitors (NRTIs) were the first drugs used to treat HIV-1 infection and they remain integral components of nearly all antiretroviral regimens. However, the long-term efficacy of combination therapies that contain NRTIs is limited by the selection of drug-resistant variants of HIV-1. In general, NRTI therapy selects for viruses that have mutations in reverse transcriptase (RT). These mutations can be broadly categorized into two groups depending on their phenotypic mechanism of resistance. Mutations such as K65R, K70E, L74V, Q151M and M184V allow RT to discriminate against the NRTI triphosphate by increasing the enzyme’s selectivity for incorporation of the natural deoxynucleotide triphosphate substrate. By comparison, the thymidine analog mutations – such as M41L, D67N, K70R, L210W, T215F/Y and K219Q – augment the ability of HIV-1 RT to excise a chain-terminating NRTI monophosphate from a prematurely terminated DNA chain. A comprehensive knowledge of resistance mechanisms, cross-resistance patterns and interplay between mutations – as described in this review – can help optimize antiretroviral treatment strategies and possibly aid in the design of NRTIs that are active against drug-resistant HIV-1.

Publisher

Future Medicine Ltd

Subject

Pharmacology (medical),Infectious Diseases,Virology,Drug Discovery,Pharmacology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3