Partial mitigation of gold nanoparticle interactions with human lymphocytes by surface functionalization with a ‘mixed matrix’

Author:

Liptrott Neill J1,Kendall Emily1,Nieves Daniel J2,Farrell John1,Rannard Steve3,Fernig David G2,Owen Andrew1

Affiliation:

1. Department of Molecular & Clinical Pharmacology, University of Liverpool, UK.

2. Department of Structural & Chemical Biology, Institute of Integrative Biology, University of Liverpool, UK

3. Department of Chemistry, University of Liverpool, UK

Abstract

Aim: To investigate interactions of gold nanoparticles with primary human lymphocytes and determine if the addition of a self-assembled monolayer of ‘mixed-matrix’ ligands influenced these interactions. Materials & methods: The effect of gold nanoparticles was measured by exposure to peripheral blood mononuclear cells (PBMCs) from healthy volunteers with subsequent examination of cell proliferation, cytokine secretion and CD4+ T-cell activation relative to controls. Results: Capped and as-synthesized gold nanoparticles augmented PBMC proliferation in response to phytohemagglutinin and this effect was greater for as-synthesized than for capped gold nanoparticles. Release of IL-10 and IFN-γ from PBMCs was increased and the effect was again more marked for as-synthesized than capped gold nanoparticles. Conclusion: This method provides an ex vivo approach for studying the interaction of nanoparticles with the human immune system. Further research is required to determine the specific mechanisms for reduction of immune activation seen here which could then be used to design a truly ‘stealth’ nanoparticle. Original submitted 11 October 2013; Revised submitted 30 January 2014

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3