3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration

Author:

Zhu Wei1,O'Brien Christopher1,O'Brien Joseph R2,Zhang Lijie Grace13

Affiliation:

1. Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, DC 20052, USA

2. Departments of Orthopedic Surgery & Neurological Surgery, The George Washington University, Washington, DC 20052, USA

3. Department of Medicine, The George Washington University, Washington, DC 20052, USA

Abstract

Injuries of the nervous system occur commonly among people of many different ages and backgrounds. Currently, there are no effective strategies to improve neural regeneration; however, tissue engineering provides a promising avenue for regeneration of many tissue types, including the neural context. Functional nerve conduits derived from tissue engineering techniques present bioengineered 3D artificial substitutes for implantation and rehabilitation of injured nerves. In particular, nanotechnology as a versatile vehicle to create biomimetic nanostructured tissue-engineered neural scaffolds provides great potential for the development of innovative and successful nerve grafts. Nanostructured conduits derived from traditional and novel tissue engineering techniques have been shown to be superior for successful neural function construction due to a high degree of biomimetic character. In this paper, we will focus on current progress in developing 3D nano/microstructured neural scaffolds via electrospinning, emerging 3D printing and self-assembly techniques, nanobiomaterials and bioactive cues for enhanced neural tissue regeneration.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3