Biophysical approaches to entry inhibitor antivirals with a broad spectrum of action

Author:

Schang Luis M1

Affiliation:

1. *Department of Biochemistry, Li Ka Shing Institute of Virology & Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada; 6-142G KATZ, Edmonton, Alberta T6G 2E1, Canada;

Abstract

ABSTRACT:  Antivirals have traditionally been developed to act by biochemical principles targeting proteins, such as inhibition of enzymes or protein–protein interactions. This approach has resulted in 57 clinical antivirals or boosters, and multiple others under development. However, viral infection also requires specific unique biophysical activities from the lipids in the viral envelope. These biophysical activities could also be targeted with small molecules. Several phospholipids, for example, inhibit infectivity in model systems. Such knowledge had not been applied to antiviral development until recently. However, two families of small molecules that inhibit viral infectivity by biophysical mechanisms affecting the lipids of the virion envelope were independently identified in 2010. Although they have yet to prove strong antiviral activities in vivo, and their long-term toxicological profiles have yet to be characterized, they do provide proof-of-principle that small molecule ‘drug-like’ compounds can act by biophysical principles affecting the lipids of the virion envelope.

Publisher

Future Medicine Ltd

Subject

Virology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3