Characterization of the cells in repair tissue following autologous chondrocyte implantation in mankind: a novel report of two cases

Author:

Wright Karina T1,Mennan Claire23,Fox Hannah4,Richardson James B23,Banerjee Robin2,Roberts Sally23

Affiliation:

1. Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, SY10 7AG, UK.

2. Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, SY10 7AG, UK

3. Institute for Science & Technology in Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK

4. Department of Pathology, Cambridge University, Tennis Court Road, Cambridge, Cambridgeshire, CB2 1QP, UK

Abstract

Aim: Autologous chondrocyte implantation (ACI) is used worldwide for the treatment of cartilage defects. This study has aimed to assess for the first time the cells that are contained within human ACI repair tissues several years post-treatment. We have compared the phenotypic properties of cells from within the ACI repair with adjacent chondrocytes and subchondral bone-derived mesenchymal stromal/stem cells (MSCs). Materials & methods: Two patients undergoing arthroplasty of their ACI-treated joint were investigated. Tissue and cells were isolated from the repair site, adjacent macroscopically normal cartilage and MSCs from the subchondral bone were characterized for their growth kinetics, morphology, immunoprofile and differentiation capacity. Results: ACI repair tissue appeared fibrocartilaginous, and ACI repair cells were heterogeneous in morphology and size when freshly isolated, becoming more homogeneous, resembling chondrocytes from adjacent cartilage, after culture expansion. The same weight of ACI repair tissue resulted in less cells than macroscopically normal cartilage. During expansion, ACI repair cells proliferated faster than MSCs but slower than chondrocytes. ACI repair cell immunoprofiles resembled chondrocytes, but their differentiation capacity matched MSCs. Conclusion: This novel report demonstrates that human ACI repair cell phenotypes resemble both chondrocytes and MSCs but at different stages of their isolation and expansion in vitro.

Publisher

Future Medicine Ltd

Subject

Embryology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3