Exosome-derived miRNAs regulate macrophage-colorectal cancer cell cross-talk during aggressive tumor development

Author:

Wadhonkar Khandu1ORCID,Singh Neha1ORCID,Heralde Francisco M2ORCID,Parihar Suraj P34ORCID,Hirani Nik5ORCID,Baig Mirza S1ORCID

Affiliation:

1. Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol-453552, Indore, India

2. Department of Biochemistry & Molecular Biology, College of Medicine, University of the Philippines-Manila, Manila 1000, Philippines

3. Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) & Institute of Infectious Diseases & Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa

4. Department of Biochemistry, Human Metabolomics, Faculty of Natural & Agricultural Sciences, North-West University, Potchefstroom, 2520, South Africa

5. MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK

Abstract

Colorectal cancer is one of the leading causes of death worldwide. Its incidence and mortality have significantly increased during the past few years. Colorectal cancer cells cross-talk with other cells through exosomes in their tumor microenvironment. The miRNAs containing exosomes are responsible for tumor growth, invasion, and metastasis. Multiple studies have shown that exosomal miRNAs are key players in the crosstalk between cancerous, immune, and stromal cells during colorectal cancer development. They help in the establishment of the tumorigenic microenvironment by reprogramming macrophages towards a pro-tumorigenic phenotype. In this review, we discussed various exosomal miRNAs derived both from colorectal cancer cells and macrophages that promote or inhibit cancer aggression. We also discussed various miRNA-based therapeutic approaches to inhibit cancer progression.

Publisher

Future Medicine Ltd

Subject

Process Chemistry and Technology,Economic Geology,Fuel Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3