Sieving treatment biomarkers from blood gene-expression profiles: a pharmacogenomic update on two types of multiple sclerosis therapy

Author:

Goertsches Robert H,Zettl Uwe K1,Hecker Michael1

Affiliation:

1. University of Rostock, Department of Neurology, Gehlsheimer Strasse 20, 18147 Rostock, Germany

Abstract

Interferon-β (IFN-β) and glatiramer acetate are routinely used to inhibit disease activity in multiple sclerosis, but their mechanisms of action are incompletely understood. Individual treatment responses vary and candidate molecular markers that predict them have yet to be established. Why some patients respond poorly to a certain treatment while others respond well is addressed by the pharmacogenomic approach, which postulates that the molecular response to treatment correlates with the clinical effects, and thus seeks biological markers to estimate prognosis, guide therapy, comprehend the drugs’ mechanisms of action and offer insights into disease pathogenesis. A poor clinical response can be owing to genetic variants in drug receptors or signaling components, or the appearance of neutralizing antibodies that interfere with the drug’s binding efficacy. Independently, such mechanisms could lead to inadequate, that is to say unchanged, molecular responses, or exceedingly increased or decreased changes. By means of DNA microarray studies, various research groups endeavour to establish a clinically relevant relationship between the biological response to these drugs and treatment effects. Molecular profiles obtained in this way differ in the pattern and number of modulated genes, suggesting the existence of an individual ‘drug-response fingerprint’. To further unravel the underlying regulatory interaction structure of the genes responsive to these immunotherapies represents a daunting but inevitable task. In this article, we focus on longitudinal ex vivo transcriptomic studies in multiple sclerosis and its therapy. We will discuss recurrently reported biomarker candidates, emphasizing those of immunologically meaning, and review studies with network module outputs.

Publisher

Future Medicine Ltd

Subject

Pharmacology,Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3