Toxicogenetics: population-based testing of drug and chemical safety in mouse models

Author:

Rusyn Ivan,Gatti Daniel M1,Wilshire Timothy2,Kleeberger Steven R34,Threadgill David W35

Affiliation:

1. Department of Environmental Sciences & Engineering, 0031 Michael Hooker Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

2. Division of Pharmacotherapy & Experimental Therapeutics, University of North Carolina, Chapel Hill, NC, USA

3. Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, USA

4. Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA

5. Department of Genetics, North Carolina State University, Raleigh, NC, USA

Abstract

The rapid decline in the cost of dense genotyping is paving the way for new DNA sequence-based laboratory tests to move quickly into clinical practice, and to ultimately help realize the promise of ‘personalized’ therapies. These advances are based on the growing appreciation of genetics as an important dimension in science and the practice of investigative pharmacology and toxicology. On the clinical side, both the regulators and the pharmaceutical industry hope that the early identification of individuals prone to adverse drug effects will keep advantageous medicines on the market for the benefit of the vast majority of prospective patients. On the environmental health protection side, there is a clear need for better science to define the range and causes of susceptibility to adverse effects of chemicals in the population, so that the appropriate regulatory limits are established. In both cases, most of the research effort is focused on genome-wide association studies in humans where de novo genotyping of each subject is required. At the same time, the power of population-based preclinical safety testing in rodent models (e.g., mouse) remains to be fully exploited. Here, we highlight the approaches available to utilize the knowledge of DNA sequence and genetic diversity of the mouse as a species in mechanistic toxicology research. We posit that appropriate genetically defined mouse models may be combined with the limited data from human studies to not only discover the genetic determinants of susceptibility, but to also understand the molecular underpinnings of toxicity.

Publisher

Future Medicine Ltd

Subject

Pharmacology,Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3