REST and the RESTless: in stem cells and beyond

Author:

Gopalakrishnan Vidya1

Affiliation:

1. The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 843, Houston, TX 77030, USA.

Abstract

Since its original discovery as a negative regulator of neuronal differentiation, the repressor element (RE) -1 silencing transcription factor (REST), also known as the neuron-restrictive silencer factor, has been implicated in novel processes such as maintenance of embryonic stem cell pluripotency and self-renewal and regulation of mitotic fidelity in non-neural cells. REST expression and activity is tightly controlled by transcriptional and post-transcriptional mechanisms in a cell and developmental stage-specific manner and perturbations in its levels or function are associated with various pathological states. REST differentially influences target-gene expression through interaction with a wide variety of cellular cofactors in a context-dependent manner. However, the influence of the microenvironment on REST-mediated regulation of gene expression is poorly understood. This review will present our current understanding of REST signaling with a greater focus on its emerging ties with noncoding RNAs and novel interacting partners, as well as its roles in embryonic stem cell self-renewal, cellular plasticity and oncogenesis/tumor suppression.

Publisher

Future Medicine Ltd

Subject

Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3