Lethal toxicities after capecitabine intake in a previously 5-FU-treated patient: why dose matters with dihydropryimidine dehydrogenase deficiency

Author:

Gbeto Crescent C1,Quaranta Sylvie2,Mari Roxane1,Fanciullino Raphaelle3,Roche Catherine2,Nahon Sophie1,Solas Caroline23,Ouafik L’Houcine2,Lacarelle Bruno23,Allegre Thierry1,Ciccolini Joseph23ORCID

Affiliation:

1. Department of Hematology Oncology & Internal Médicine Centre Hospitalier d’Aix en Provence, Aix-en-Provence, France

2. Medical Biology Department, APHM Marseille, France

3. SMARTc Unit, Pharmacokinetics Laboratory, CRCM UMR Inserm 1068, Aix Marseille Univ Marseille, France

Abstract

Dihydropryimidine dehydrogenase (DPD) deficiency is a pharmacogenetic syndrome associated with severe or lethal toxicities with oral capecitabine. Usually, patients with history of 5-FU-based therapy with no signs for life-threatening toxicities are considered as not DPD-deficient individuals who can be safely treated next with capecitabine if required. Here we describe the case of a woman originally treated with standard FEC100 protocol for metastatic breast cancer with little severe toxicities but grade-3 mucosities that were quickly resolved by symptomatic treatment. When switched to capecitabine + vinorelbine combo, extremely severe toxicities with fatal outcome were unexpectedly observed. Pharmacogenetic investigations were performed on cytidine deaminase and DPYD, and showed that this patient was heterozygous for the 2846A>T mutation on the DPYD gene. DPD phenotyping (i.e., uracil plasma levels >250 ng/ml, dihydrouracil/uracil ratio <0.5) confirmed that this patient was profoundly DPD deficient. Differences in fluoropyrimidine dosing between FEC100 (i.e., 500 mg/m2 5-FU) and capecitabine (i.e., 2250 mg daily) could explain why initial 5-FU-based protocol did not lead to life-threatening toxicities, whereas capecitabine rapidly triggered toxic death. Overall, this case report suggests that any toxicity, even when not life threatening, should be considered as a warning signal for possible underlying profound DPD deficiency syndrome, especially with low-dose protocols.

Publisher

Future Medicine Ltd

Subject

Pharmacology,Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3