Understanding nonviral nucleic acid delivery with quantum dot-FRET nanosensors

Author:

Grigsby Christopher L1,Ho Yi-Ping1,Leong Kam W23

Affiliation:

1. Department of Biomedical Engineering, Duke University, Durham, NC, USA

2. Department of Biomedical Engineering, Duke University, Durham, NC, USA.

3. Department of Surgery, School of Medicine, Duke University, Durham, NC, USA

Abstract

Nonviral delivery of nucleic acids is a potentially safe and viable therapeutic modality for inherited and acquired diseases. However, current systems have proven too inefficient for widespread clinical translation. The rational design of improved carriers depends on a quantitative, mechanistic understanding of the rate-limiting barriers to efficient intracellular delivery. Separation of the nucleic acid from the carrier is one of the barriers, which may be analyzed by Förster resonance energy transfer (FRET), a mechanism used to detect interactions between fluorescently labeled molecules. When applied to the molecular components of polymer or lipid-based nanocomplexes, FRET provides information on their complexation status, uptake, release and degradation. Recently, the design of FRET systems incorporating quantum dots as energy donors has led to improved signal stability, allowing prolonged measurements, as well as increased sensitivity, enabling direct detection and the potential for multiplexing. The union of quantum dots and FRET is providing new insights into the mechanisms of nonviral nucleic acid delivery through convergent characterization of delivery barriers, and has the potential to accelerate the design of improved carriers to realize the potential of nucleic acid therapeutics and gene medicine.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3