Gene–gene and gene–environment interactions in interferon therapy for chronic hepatitis C

Author:

Lin Eugene1,Hwang Yuchi1,Chen Ellson Y1

Affiliation:

1. Vita Genomics, Inc, 7 Fl, No. 6, Sec. 1, Jung-Shing Road, Wugu Shiang, Taipei, Taiwan.

Abstract

Introduction: In studies of pharmacogenomics, it is essential to address gene–gene and gene–environment interactions to describe complex traits involving pharmacokinetic and pharmacodynamic mechanisms. In this work, our goal is to detect gene–gene and gene–environment interactions resulting from an analysis of chronic hepatitis C patients’ clinical factors including SNPs, viral genotype, viral load, age and gender. Materials & Methods: We collected blood samples from 523 chronic hepatitis C patients who had received interferon and ribavirin combination therapy. Based on the treatment strategy for chronic hepatitis C patients, we focused our search for candidate genes involved in pathways related to interferon signaling and immunomodulation. To investigate gene–gene and gene–environment interactions, we implemented an artificial neural network-based method for identifying significant interactions between clinical factors with the fivefold crossvalidation method and permutation tests. The artificial neural network model was trained by an algorithm with an adaptive momentum and learning rate. Results: A total of 20 SNPs were selected from six candidate genes including adenosine deaminase-RNA-specific (ADAR), caspase 5 (CASP5), interferon consensus sequence binding protein 1 (ICSBP1), interferon-induced protein 44 (IFI44), phosphoinositide-3-kinase catalytic γ polypeptide (PIK3CG), and transporter 2 ATP-binding cassette subfamily B (TAP2) genes. By applying our artificial neural network-based approach, IFI44 was found in the significant two-locus, three-locus and four-locus gene–gene effect models, as well as in the significant two-factor and three-factor gene–environment effect models. Furthermore, viral genotype remained in the best two-factor, three-factor and four-factor gene–environment models. These results support the hypothesis that IFI44 and viral genotype may play a role in the pharmacogenomics of interferon treatment. In addition, our approach identified a panel of ten clinical factors that may be more significant than the others for further study. Conclusion: We demonstrated that our artificial neural network-based approach is a promising method to assess the gene–gene and gene–environment interactions for interferon and ribavirin combination treatment in chronic hepatitis C patients by using clinical factors such as SNPs, viral genotype, viral load, age and gender.

Publisher

Future Medicine Ltd

Subject

Pharmacology,Genetics,Molecular Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3