Targeting of eugenol-loaded solid lipid nanoparticles to the epidermal layer of human skin

Author:

Garg Anuj12,Singh Sanjay1

Affiliation:

1. Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India

2. Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), ITI Compound, Raebareli-229010, India

Abstract

Aim: The purpose of this study was to formulate carbopol hydrogels containing eugenol-loaded solid lipid nanoparticles (EG–SLNs) for epidermal targeting to treat fungal infections in skin. Materials & methods: EG–SLNs were incorporated into carbopol hydrogels and the physiochemical characteristics of EG–SLN in hydrogels were investigated by dynamic light scattering, transmission electron microscopy and atomic force microscopy. Rheological behavior and mechanical properties of hydrogels were also studied before and after incorporation of EG–SLNs. The epidermal-targeting ability of EG–SLN-enriched hydrogels was evaluated by estimation of eugenol in the epidermis of human cadaver skin. An occlusion (hydration) study was also performed to elucidate the mechanism of epidermal targeting of EG–SLN-enriched hydrogels. Results: The particle size (d90) and morphology of EG–SLNs were not significantly changed after incorporation into the hydrogel. EG–SLN of stearic acid-enriched hydrogels follow the Carreau model that describes pseudoplastic flow. The hydrogel containing EG–SLN of stearic acid and of Compritol® (Gattefose, Mumbai, India) showed significantly greater accumulation of eugenol in the epidermis (62.65 ± 4.35 and 52.86 ± 3.76 µg/cm2, respectively) than that of eugenol–hydroxypropyl-β–cyclodextrin complex in hydrogel (9.77 ± 1.16 µg/cm2) and almond oil solution of eugenol (3.45 ± 0.6 µg/cm2). The occlusion study demonstrated greater hydration of human cadaver skin treated with EG–SLN-enriched hydrogel compared with that of hydrogel and intact skin. Conclusion: Hydrogels containing EG–SLNs could be a promising formulation for epidermal targeting to treat fungal infections in skin. Original submitted 26 March 2012; Revised submitted 29 January 2013

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3