Real-time optical imaging using quantum dot and related nanocrystals

Author:

Kosaka Nobuyuki1,McCann Thomas E1,Mitsunaga Makoto1,Choyke Peter L1,Kobayashi Hisataka

Affiliation:

1. Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr., Bethesda, MD 20892–1088, USA

Abstract

Biomedical optical imaging is rapidly evolving because of its desirable features of rapid frame rates, high sensitivity, low cost, portability and lack of radiation. Quantum dots are attractive as imaging agents owing to their high brightness, and photo- and bio-stability. Here, the current status of in vitro and in vivo real-time optical imaging with quantum dots is reviewed. In addition, we consider related nanocrystals based on solid-state semiconductors, including upconverting nanoparticles and bioluminescence resonance energy transfer quantum dots. These particles can improve the signal-to-background ratio for real-time imaging largely by suppressing background signal. Although toxicity and biodistribution of quantum dots and their close relatives remain prime concerns for translation to human imaging, these agents have many desirable features that should be explored for medical purposes.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3