Genome-wide miRNAs expression profiles of Schistosoma japonicum schistosomula in response to artesunate

Author:

Kong Qing-Ming1,Zhu Xiao2,Tong Qun-Bo1,Zheng Bin1,Shi Na-Yu3,Lou Di1,Ding Jian-Zu1,Jia Jian-Ping1,Chen Xiao-Heng1,Chen Rui1,Lu Shao-Hong1

Affiliation:

1. Department of Immunity & Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences, No.182, Road Tianmushan, 310013, Hangzhou, China

2. Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, 523808, Dongguan, China

3. Department of Gynecology, Hangzhou Obstetrics & Gynecology Hospital, 310013, Hangzhou, China

Abstract

Aim: miRNAs play a significant role in pharmacogenomics and are likely to be important in the molecular mechanism of atesunate (ART) effects on Schistosoma japonicum. Methods: We sequenced the RNAs using an Illumina (Solexa) DNA sequencer and compared the relative expression levels of the miRNAs in 10-day-old schistosomula from ART and the parallel control group. Results: We characterized 95 known miRNAs from S. japonicum schistosomula individuals, including 38 novel miRNA families. Among the detectable 134 miRNAs differentially expressed (>2.0-fold change, p < 0.01) after ART treatment in schistosomula, a total of seven known or novel 3p- or 5p- derived S. japonicum miRNAs were characterized. We propose that sja-miR-125b may regulate the expression of ART metabolizing enzymes, glutathione synthetase or heme-binding protein 2 to help S. japonicum resists or adapts to drug stress and also ART may significantly inhibit sexual maturation of female worms mediated by mir-71b/2 miRNA cluster. Conclusion: This was the first comprehensive miRNAs expression profile analysis of S. japonicum in response to ART, and provides an overview of the complex network of the mechanism of action of ART on S. japonicum.

Publisher

Future Medicine Ltd

Subject

Pharmacology,Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3