Affiliation:
1. College of Pharmacy & Health Sciences, St. John's University, New York, NY 11439, USA
Abstract
Aim: To formulate an aerosolized nanoliposomal carrier for remdesivir (AL-Rem) against coronavirus disease 2019. Methods: AL-Rem was prepared using modified hydration technique. Cytotoxicity in lung adenocarcinoma cells, stability and aerodynamic characteristics of developed liposomes were evaluated. Results: AL-Rem showed high encapsulation efficiency of 99.79%, with hydrodynamic diameter of 71.46 ± 1.35 nm and surface charge of -32 mV. AL-Rem demonstrated minimal cytotoxicity in A549 cells and retained monolayer integrity of Calu-3 cells. AL-Rem showed sustained release, with complete drug release obtained within 50 h in simulated lung fluid. Long-term stability indicated >90% drug recovery at 4°C. Desirable aerosol performance, with mass median aerodynamic diameter of 4.56 ± 0.55 and fine particle fraction of 74.40 ± 2.96%, confirmed successful nebulization of AL-Rem. Conclusion: AL-Rem represents an effective alternative for coronavirus disease 2019 treatment.
Subject
Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献