Affiliation:
1. Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi – 221005, India
2. School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi – 221005, India
Abstract
Aim: To design, optimize and evaluate docetaxel-loaded chitosan nanoparticles with (targeted) and without (nontargeted) cetuximab conjugation for the treatment of non-small-cell lung cancer (NSCLC). Materials & methods: Risk-assessment, optimization, in vitro characterizations, stability assessments, release studies, cell-culture studies were performed along with histopathology, pharmacokinetic and anticancer efficacy studies. Results: The nanoparticles of desired particle size (152.59 ± 3.90 nm to 180.63 ± 5.21 nm) which could sustain drug release for up to 70 h, were obtained. The cell-culture studies demonstrated the superiority of the formulations over Docel™. The pharmacokinetic evaluation showed the excellent systemic bioavailability of prepared NPs. The histopathology screening revealed lesser toxicity of both the nontargeted and targeted formulations. The targeted nanoformulation significantly reduced tumor growth than the nontargeted formulation and Docel. Conclusion: These results demonstrate the therapeutic potential of the prepared nanoformulation. After proper clinical validation, it could be a promising approach for the treatment of NSCLC.
Subject
Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献