Chemical synthesis and characterization of silver-protected vasoactive intestinal peptide nanoparticles

Author:

Fernandez-Montesinos Rafael1,Castillo Paula M12,Klippstein Rebecca1,Gonzalez-Rey Elena13,Mejias Jose A2,Zaderenko Ana P2,Pozo David1

Affiliation:

1. CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.

2. University Pablo de Olavide, Seville, Spain

3. University of Seville, Seville, Spain

Abstract

We characterized a method to conjugate functional silver nanoparticles with vasoactive intestinal peptide (VIP), which could be used as a working model for further tailor-made applications based on VIP surface functionality. Despite sustained interest in the therapeutic applications of VIP, and the fact that its drugability could be largely improved by the attachament to functionalized metal nanoparticles, no methods have been described so far to obtain them. Materials & methods: VIP was conjugated to tiopronin-capped silver nanoparticles of a narrow size distribution, by means of proper linkers, to obtain VIP functionalized silver nanoparticles with two different VIP orientations (Ag–tiopronin–PEG–succinic–[His]VIP and Ag–tiopronin–PEG–VIP[His]). VIP intermediate nanoparticles were characterized by transmission-electron microscopy and Fourier transform infrared spectroscopy. VIP functionalized silver nanoparticles cytotoxicity was determined by lactate dehydrogenase release from mixed glial cultures prepared from cerebral cortices of 1–3 days-old C57/Bl mice. Cells were used for lipopolysaccharide stimulation at day 18–22 of culture. Results: Two different types of VIP-functionalized silver nanoparticles were obtained; both expose the C-terminal part of the neuropeptide, but in the first type VIP is attached to silver nanoparticle through its free amine terminus (Ag–tiopronin–PEG–succinic–[His]VIP), while in the second type, VIP N-terminus remains free (Ag–tiopronin–PEG–VIP[His]). VIP-functionalized silver nanoparticles did not compromise cellular viability and inhibited microglia-induced stimulation under inflammatory conditions. Conclusion: The chemical synthesis procedure developed to obtain VIP-functionalized silver nanoparticles rendered functional products, in terms of biological activity. The two alternative orientations designed, reduced the constraints for chemical synthesis that depends on the nanosurface to be functionalized. Our study provides, for the first time, a proof of principle to enhance the therapeutic potential of VIP with the valuable properties of metal nanoparticles for imaging, targeting and drug delivery.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3