Multifunctional MnO2-based nanoplatform-induced ferroptosis and apoptosis for synergetic chemoradiotherapy

Author:

Li Xi1ORCID,Wang Qi23,Yu Sihui1,Zhang Minyi4,Liu Xijian4,Deng Guoying3,Liu Yuan5,Wu Sufang1

Affiliation:

1. Department of Obstetrics & Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 650 Xin Songjiang Road, Shanghai, 201620, China

2. Department of Orthopedics, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200333, China

3. Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 650 Xin Songjiang Road, Shanghai, 201620, China

4. College of Chemistry & Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China

5. Reproductive Medicine Center, Department of Obstetrics & Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 650 Xin Songjiang Road, Shanghai, 201620, China

Abstract

Background: Radiosensitizers that can effectively consume glutathione provide broad prospects for enhancing the efficacy and reducing the side effects of radiotherapy. Aim: To explore the potential role of CuS@mSiO2@MnO2 nanocomposites in synergetic chemoradiotherapy. Methods: Nanocomposites were characterized by transmission electron microscopy, UV-Vis spectrometry and dynamic light scattering and were loaded with doxorubicin (DOX). The uptake and biodistribution of nanocomposites were observed by CCK8 assay, MRI and confocal laser scanning microscopy. The radiosensitization effect of nanocomposites and nanocomposites/DOX was assessed both in vitro and in vivo. Results: In vitro application of nanocomposites, with an average diameter of 30 nm and ζ-potential of 13.2 ± 0.4 mV, in combination with radiotherapy, depleted glutathione and induced ferroptosis and apoptosis. Nanocomposites/DOX exhibited tumor cell damage in vivo. Conclusion: We propose that this glutathione-depleting nanosystem could be a radiosensitizer as well as a drug transporter.

Funder

National Natural Science Foundation of China

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3