Green synthesis of silica nanoparticles from olive residue and investigation of their anticancer potential

Author:

Rezaeian Masoud12,Afjoul Homa1,Shamloo Amir1ORCID,Maleki Ali2ORCID,Afjoul Neda3

Affiliation:

1. Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

2. Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

3. Department of Biomedical Engineering, Islamic Azad University, Tehran, Iran

Abstract

Aim: To synthesize silica nanoparticles (SNPs) from olive residue with anticancer properties. Methods: SNPs were synthesized from olive residue ash (ORA). After characterization, cytotoxicity of the SNPs was assessed in vitro, with measurement of reactive oxygen species (ROS) levels. Results: The average diameter of the synthesized SNPs was 30–40 nm, and zeta potential analysis suggested they were stable. The synthesized SNPs were less cytotoxic than commercially available SNPs against fibroblast cells, and the cytotoxic effect on breast cancer cells was significantly higher compared with fibroblast cells. SNPs showed greater uptake into cancer cells where there was greater production of free radicals. Conclusion: SNPs synthesized from ORA have potential anticancer applications because they are more cytotoxic toward cancer cells than fibroblast cells.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3