Modulating liposomal nanoparticles to enhance uptake and targeting of methicillin-resistant Staphylococcus aureus

Author:

Elhabak Mona1ORCID,Shebl Rania Ibrahim2ORCID,Omar Samia3

Affiliation:

1. Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt

2. Department of Microbiology & Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt

3. Department of Pharmaceutical Technology, Faculty of Pharmacy, Horus University, New Domiate, Egypt

Abstract

Aims: To explore the role of modifying the phospholipid composition of liposomal nanoparticles (LNPs) on their uptake. Methods: Different LNPs were labeled with a fluorescent marker and their uptake by human lung fibroblast (WI-38) cells was evaluated using flow cytometry and confocal microscopy. Linezolid was loaded in LNPs showing enhanced uptake, and their ability to reduce intracellular methicillin-resistant Staphylococcus aureus (MRSA) was investigated by in vitro infection. Results: Liposomes with disaturated dipalmitoylphosphatidylcholine–phosphatidylglycerol–phosphatidylethanolamine at a molar ratio of 60:10:10, mimicking that of WI-38 cells, were more effectively uptaken. Linezolid-loaded LNPs significantly reduced intracellular MRSA viable count. Conclusion: Modified LNPs could be promising antibiotic nanocarriers for targeting intracellular MRSA, which are usually resistant to conventional antibiotics.

Publisher

Future Medicine Ltd

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3