Polycaprolactone/gelatin degradable vascular grafts simulating endothelium functions modified by nitric oxide generation

Author:

Zhang XiangYun1,Shi Jie1,Chen SiYuan1,Dong YunSheng1,Zhang Lin1,Midgley Adam C1,Kong DeLing1,Wang ShuFang1

Affiliation:

1. Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University Tianjin 300071, China

Abstract

Aim: Host remolding with scaffolds degradation and rapid formation of a complete endothelium, are prospective solutions for improving performance of small diameter vascular grafts. Materials & methods: For this purpose, microfibrous polycaprolactone (PCL)/gelatin scaffolds were prepared by electrospinning and subsequently functionalized with heparin and organoselenium-immobilized polyethyleneimine for nitric oxide generation through layer-by-layer self-assembly. Results: Our results showed that modified PCL/gelatin grafts had strong catalytic nitric oxide generation capacity and facilitated the enhanced attachment of endothelial cells, compared with control scaffold groups. Meanwhile, the modified grafts exhibited good hemocombatility, rapid endothelialization and smooth muscle cell regeneration. Conclusion: Modification of biodegradable scaffolds, proposed in this work, could enhance biological functions of vascular grafts and provides new strategies for the construction of small diameter vascular grafts.

Publisher

Future Medicine Ltd

Subject

Embryology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3