Transcriptome-wide N6-methyladenosine methylation landscape of coronary artery disease

Author:

Deng Keyong12ORCID,Ning Xiaotong12,Ren Xiaoxiao12,Yang Bin12,Li Jianxin12,Cao Jie12,Chen Jichun12,Lu Xiangfeng12,Chen Shufeng12,Wang Laiyuan12

Affiliation:

1. State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China

2. Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China

Abstract

Aim: To reveal transcriptome-wide N6-methyladenosine (m6A) methylome of coronary artery disease (CAD). Materials & methods: The m6A levels of RNA from peripheral blood mononuclear cells measured by colorimetry were significantly decreased in CAD cases. Transcriptome-wide m6A methylome profiled by methylated RNA immunoprecipitation sequencing (MeRIP-seq) identified differentially methylated m6A sites within both mRNAs and lncRNAs between CAD and control group. Results: Bioinformatic analysis indicated that differentially methylated genes were involved in the pathogenesis of atherosclerosis. MeRIP-quantitative real-time PCR assay confirmed the reliability of MeRIP-seq data. Finally, the rat carotid artery balloon injury model was performed to confirm the role of m6A demethylase FTO in neointima formation. Conclusion: Our study provided a resource of differentially methylated m6A profile for uncovering m6A biological functions in the pathogenesis of CAD.

Funder

CAMS Innovation Fund for Medical Sciences

High-Tech Research and Development Program of China, 863 Plan

National Basic Research Program of China, 973 Plan

National Natural Science Foundation of China

Publisher

Future Medicine Ltd

Subject

Cancer Research,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3