Targeting nevirapine delivery across human brain microvascular endothelial cells using transferrin-grafted poly(lactide-co-glycolide) nanoparticles

Author:

Kuo Yung-Chih1,Lin Pei-I1,Wang Cheng-Chin1

Affiliation:

1. Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China.

Abstract

Aims: Poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) were grafted with transferrin (Tf) to enhance the transport of nevirapine (NVP) across human brain microvascular endothelial cells (HBMECs). Methods: NVP-loaded PLGA NPs with surface-grafting Tf (Tf/NVP–PLGA NPs) were incubated with HBMECs and immunochemical staining characterized Tf receptors (TfRs). Results: The polydispersity index of Tf/NVP–PLGA NPs was lower than 0.008. The entrapment efficiency of NVP and loading efficiency of Tf was 20–75% and 15–80%, respectively. Tf slightly retarded the release of NVP from PLGA. Dioctadecyldimethylammonium bromide (DODAB)-stabilized Tf/NVP–PLGA NPs reduced the viability of HBMECs to 70–75%. The secretion of TNF-α was inhibited by Tf and stimulated by DODAB. The permeability of NVP across HBMECs reached maxima at 67% DODAB and 0.1–0.2% Tf. An increase in the concentration of Tf enhanced the uptake of Tf/NVP–PLGA NPs via a TfR-mediated mechanism. Conclusion: Tf/NVP–PLGA NPs are efficacious carriers in targeting delivery across HBMECs for viral therapy.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3