Serum-derived nanoparticles: de novo generation and growth in vitro, and internalization by mammalian cells in culture

Author:

Peng Hsin-Hsin12,Martel Jan123,Lee Yu-Hsiu12,Ojcius David M24,Young John D5

Affiliation:

1. Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan 333, Taiwan

2. Center for Molecular & Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan

3. Graduate Institute of Biomedical Sciences, Chang Gung University, Gueishan, Taoyuan 333, Taiwan

4. Health Sciences Research Institute & School of Natural Sciences, University of California, Merced, CA 95343, USA

5. Laboratory of Cellular Physiology & Immunology, The Rockefeller University, New York, NY 10021, USA.

Abstract

Aim: While nanoparticles (NPs) have been shown to form spontaneously in body fluids such as serum, the possible implications of these NPs for cell cultures that use supporting media containing serum remain unclear. To understand the de novo formation of NPs, we delineated their growth characteristics, chemical composition and interaction with cells in culture. Materials & Methods: Serum-derived particles were analyzed using a combination of dynamic light scattering, turbidity measurements, spectroscopic techniques and optical/electron microscopies. Results: NPs were found in serum and in serum-containing medium and they increased in size and number during incubation. The mineral particles, consisting mainly of calcium carbonate phosphate bound to organics such as proteins, underwent an amorphous-to-crystalline transformation with time. Serum-derived particles were internalized by the cells tested, eventually reaching lysosomal compartments. Conclusion: The spontaneous formation of serum-derived NPs and their internalization by cells may have overlooked effects on cultured cells in vitro as well as potential pathophysiological consequences in vivo.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3