Hemangioblasts from human embryonic stem cells generate multilayered blood vessels with functional smooth muscle cells

Author:

Lu Shi-Jiang1,Ivanova Yordanka1,Feng Qiang1,Luo Chenmei1,Lanza Robert1

Affiliation:

1. Advanced Cell Technology, 381 Plantation Street, Worcester, Massachusetts, MA 01605, USA.

Abstract

Background: The formation and regeneration of functional vasculatures require both endothelial cells (ECs) and vascular smooth muscle cells (SMCs). Identification and isolation of progenitors with potential for both EC and SMC lineage differentiation from an inexhaustible source, such as human embryonic stem (hES) or induced pluripotent stem cells, will be desirable for cell replacement therapy. Method: Recently, we have developed a serum-free and animal feeder-free differentiation system to generate blast cells (BCs) from hESCs. These cells possess the characteristics of hemangioblasts in vitro and are capable of repairing damaged retinal vasculatures, restoring blood flow in hind-limb ischemia and reducing the mortality rate after myocardial infarction in vivo. We demonstrate here that BCs express markers of SMCs and differentiate into smooth muscle-like cells (SMLCs), in addition to ECs and hematopoietic cells. Results: When BCs from individual blast colonies were cultured in SMC medium, they differentiated into both ECs and SMLCs, which formed capillary-vascular-like structures after replating on Matrigel™. The SMLCs expressed SMC-specific markers (α-SM actin and calponin) and contracted upon treatment with carbachol. When implanted in nude mice, these cells formed microvasculature with ECs in Matrigel plaques. The BCs differentiated into both ECs and SMLCs, and incorporated into blood vessels after injection into ischemic tissue. Conclusion: These results demonstrate that hemangioblasts (BCs) generated from hESCs are tripotential and can provide a potentially inexhaustible source of cells for the treatment of human blood and vascular diseases.

Publisher

Future Medicine Ltd

Subject

Embryology,Biomedical Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3