Functional recovery in T13–L1 hemisected rats resulting from peripheral nerve rerouting: role of central neuroplasticity

Author:

Konya Deniz123,Liao Wei-Lee24,Choi Howard24,Yu Dou12,Woodard Matthew C12,Newton Kimberly M12,King Allyson M12,Pamir Necmettin M3,Black Peter M2,Frontera Walter R45,Sabharwal Sunil24,Teng Yang D124

Affiliation:

1. Division of SCI Research, VA Boston Healthcare System, Boston, MA 02132, USA

2. Department of Neurosurgery, Harvard Medical School, the Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA

3. Department of Neurosurgery, Marmara University, Istanbul, Turkey

4. Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA 02114, USA

5. School of Medicine, University of Puerto Rico, San Juan, PR, USA

Abstract

Background: Functional improvements after spinal cord injury (SCI) have been reported anecdotally following neurotization, in other words, rerouting nerves proximal to injured cord segments to distal neuromuscular targets, although the underlying mechanisms remain largely unknown. Aim: To test our hypothesis that neurotization-mediated recovery is primarily attributable to CNS neuroplasticity that therefore manifests optimal response during particular therapeutic windows, we anastomosed the T12 intercostal nerve to the ipsilateral L3 nerve root 1–4 weeks after T13–L1 midline hemisection in rats. Results: While axonal tracing and electromyography revealed limited reinnervation in the target muscles, neurobehavioral function, as assessed by locomotion, extensor postural thrust and sciatic functional index of SCI rats receiving neurotization 7–10 days postinjury (n = 11), recovered to levels close to non-SCI controls with neurotization only (n = 3), beginning 3–5 weeks postanastomosis. Conversely, hindlimb deficits were unchanged in hemisected controls with sham neurotization (n = 7) or 4 weeks-delayed neurotization (n = 3) and in rats that had undergone T13–L1 transection plus bilateral anastomoses (n = 6). Conclusion: Neurotized SCI animals demonstrated multiparameters of neural reorganization in the distal lumbar cord, including enhanced proliferation of endogenous neural stem cells, increased immunoreactivity of serotonin and synaptophysin, and neurite growth/sprouting, suggesting that anastomosing functional nerves with the nerve stump emerging distal to the hemisection stimulates neuroplasticity in the dysfunctional spinal cord. Our conclusion is validated by the fact that severance of the T13–L1 contralateral cord abolished the postanastomosis functional recovery. Neurotization and its neuroplastic sequelae need to be explored further to optimize clinical strategies of post-SCI functional repair.

Publisher

Future Medicine Ltd

Subject

Embryology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3