Abstract
Hydrological drought, characterized by a significant deficiency in rainfall events, promotes natural desiccation processes. The reduction in water recharge and the loss of freshwater ecosystems pose urgent challenges in the face of increasing global population and the escalating demand for water resources. The variability in the duration of no-flow periods can have profound implications for ecosystem functioning, specifically impacting the microbiota residing in streambed sediments and the vital processes they perform. The streambed serves as an ecotone where microorganisms form biofilms, playing critical roles in in-stream biogeochemical cycles and greenhouse gas emissions. Consequently, prolonged desiccation periods and subsequent rewetting episodes can disrupt, limit, or alter the functions and structure of microbial communities, thereby compromising the overall functioning of aquatic ecosystems. Understanding how streambed microbial communities respond to prolonged desiccation events is crucial. This revision manuscript provides a synthesis of recent empirical and experimental studies that have explored various aspects of streambed microbial communities in the context of diverse drying-rewetting periods. A special focus is placed on highlighting key microbial community structural and functional responses that could be used as endpoints of responses to desiccation. In particular, we showed the greater expression of the phenol-oxidase activity among the intermittent streambeds submitted to long-term drought. This result suggested a potential begin of transition from freshwater to terrestrial systems. Additionally, we observed a tendency of decreasing bacterial diversity in the dry conditions together with a change in the relative abundance of certain microbial taxa and a general shift from Gram-negative to Gram-positive bacteria. All of these evidences strengthened the similarity between the dry streambed systems studied and a (dry)-soil environment, suggesting that prolonged and unusual dry periods could boost the terrestrial transition of the aquatic intermittent ecosystem. By summarizing these findings, we aim to enhance our understanding of the responses exhibited by streambed microbiota in the face of desiccation events. The synthesized results may further provide potential diagnosis and/or management tools for intermittent freshwater ecosystems functioning.
Publisher
Asociacion Espanola de Ecologia Terrestre (AEET)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献