Visual Social Media and Big Data. Interpreting Instagram Images Posted on Twitter

Author:

Murthy Dhiraj,Gross Alexander,McGarry Marisa

Abstract

Abstract Social media such as Twitter and Instagram are fast, free, and multicast. These attributes make them particularly useful for crisis communication. However, the speed and volume also make them challenging to study. Historically, journalists controlled what/how images represented crises. Large volumes of social media can change the politics of representing disasters. However, methodologically, it is challenging to study visual social media data. Specifically, the process is usually labour-intensive, using human coding of images to discern themes and subjects. For this reason, Studies investigating social media during crises tend to examine text. In addition, application programming interfaces (APIs) for visual social media services such as Instagram and Snapchat are restrictive or even non-existent. Our work uses images posted by Instagram users on Twitter during Hurricane Sandy as a case study. This particular case is unique as it is perhaps the first US disaster where Instagram played a key role in how victims experienced Sandy. It is also the last major US disaster to take place before Instagram images were removed from Twitter feeds. Our sample consists of 11,964 Instagram images embedded into tweets during a twoweek timeline surrounding Hurricane Sandy. We found that the production and consumption of selfies, food/drink, pets, and humorous macro images highlight possible changes in the politics of representing disasters - a potential turn from top-down understandings of disasters to bottom-up, citizen informed views. Ultimately, we argue that image data produced during crises has potential value in helping us understand the social experience of disasters, but studying these types of data presents theoretical and methodological challenges.

Publisher

Transcript Verlag

Subject

General Medicine

Reference15 articles.

1. Special Issue : The ethics of images In Visual pp;Chouliaraki;Communication,2013

2. Youth and surveillance in the Facebook era : Policy interventions and social implications In pp;Montgomery;Telecommunications Policy,2015

3. Big Data solutions on a small scale : Evaluating accessible high - performance computing for social research In Big Data;Murthy;Society,2014

4. The content of social media s shared images about Ebola : a retro - spective study In pp Visual Social Media and Big Data An anatomy of a YouTube meme In New media & Society pp;Seltzer;Public Health,2015

5. Social media photography : construing subjectivity in Instagram images In Visual pp;Zappavigna;Communication,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3