Author:
Rzepka Nathalie,Simbeck Katharina,Pinkwart Niels
Reference53 articles.
1. Anderson, H., Boodhwani, A., & Baker, R. S. (2019). Assessing the Fairness of Graduation Predictions. Proceedings of the 12th International Conference on Educational Data Mining (EDM 2019). http://radix.www.upenn.edu/learninganalytics/ryanbaker/edm2019_paper56.pdf (zuletzt abgerufen 23.06.2023)
2. Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue. In S. Dawson (Hg.), Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (S. 267). ACM. https://doi.org/10.1145/2330601.2330666 (zuletzt abgerufen 23.06.2023)
3. Baker, R. S., & Hawn, A. (2021). Algorithmic Bias in Education. International Journal of Artificial Intelligence in Education, 1–41.
4. Barla, M., Bieliková, M., Ezzeddinne, A. B., Kramár, T., Šimko, M., & Vozár, O. (2010). On the impact of adaptive test question selection for learning efficiency. Computers & Education, 55(2), 846–857.
5. Bodily, R., & Verbert, K. (2017). Review of Research on Student‐Facing Learning Analytics Dashboards and Educational Recommender Systems. IEEE Transactions on Learning Technologies, 10(4), 405–418.