MACHINE LEARNING APPLICATION IN INVERSE DESIGN OF FEW-MODE FIBERS

Author:

Takialddin Al Smadi

Abstract

The importance of optical fiber research is increasing due to its applications in the digital world, including components, sensors, and high data rate communication. Few-mode fiber (FMF) research is regenerating due to its high data rate transmission ability. This dissertation work proposes new designs of FMFs with updated material composition and geometry to establish weakly coupled spatial division multiplexing (SDM)/mode division multiplexing (MDM) links. The next generation of communication, 5G aims to connect people and things via intelligent networks, but current network architectures struggle to handle massive data traffic. The spatial domain of the fiber is highly useful for handling this massive data traffic. This work reviews the requirements of 5G networks and how they can be handled through spatial multiplexing and mode multiplexing through a few-mode optical fiber. The article demonstrates machine learning-based inverse modeling of the triangular-ring-core few-mode fiber profile with weak coupling optimization.

Publisher

International Scholars and Researchers Association

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3