The Holos Reactor: A Distributable Power Generator with Transportable Subcritical Power Modules

Author:

Filippone Claudio,Jordan KellyORCID

Abstract

Holos is a distributable modular nuclear power generator with enhanced safety features. Holos design objectives include production of affordable pollutant-free electricity and process heat with the safest melt-tolerant and proliferation resistant fuels. The design leverages commercial tech- nologies utilized for the conversion of thermal energy into conditioned electricity. Holos can op- erate as a stand-alone electric island at sites with no power grid infrastructure and can be scaled- up or clustered to meet local electric demands. Specialized configurations of Holos generators can be airlifted and timely deployed to supply emergency electricity and process heat to disaster areas and to inaccessible remote locations. The proposed distributable electric generator is com- prised within dimensions and weight requirements compatible with International Standard Or- ganization (ISO) transport containers, and is formed by subcritical power modules protected from shock stressors during transport. Holos coupled core becomes critical and enables power generation only when multiple subcritical power modules are positioned near one another. Cool- ing of Holos fuel relies only on environmental air during operations with passive decay-heat re- moval. Depending on configurations, Holos fuel cycle is 12-20 years, with 8%-15% enriched nuclear fuel sealed at all times and contained within replaceable fuel cartridges. At the end of the fuel cycle, the fuel cartridges fit within licensed transport and storage canisters for long term storage with low decommissioning cost. Holos power conversion components can be recondi- tioned when the fuel cartridges are replaced at the end of their fuel cycles and the generator can be re-licensed to resume operation for a total generator life-span of 60 years. In this design, the thermodynamic cycle utilized to convert the core thermal energy into electricity is based on the Brayton power cycle. In some configurations, the design integrates and couples a bottoming Rankine power cycle operating with organic fluids to enhance efficiency, convert decay thermal energy into electricity and support process heat applications. Holos waste heat recovery and con- version feature also relaxes thermal loading requirements at underground spent fuel repositories. The power conversion components utilized in this design are off-the-shelf, with power ratings comparable to those forming aviation jet engines and gas turbines commercially available worldwide. This approach simplifies the design and enables factory certification following the regulatory and quality assurance programs applied by the aviation industry. Holos innovative architecture provides the means to support a distributable power source satisfying various appli- cations’ requirements with enhanced safety and substantial cost reductions, thus making Holos generators competitive, and synergetic with technology sourced on renewable energy.

Publisher

Center for Open Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3