Understanding Stability of Low-Inertia Systems

Author:

Markovic UrosORCID,Stanojev Ognjen,Vrettos Evangelos,Aristidou PetrosORCID,Hug Gabriela

Abstract

A large-scale integration of renewable generation,usually interfaced to the network through power electronics,has led to an overall decrease in power system inertia. This paper presents novel insights on the fundamental stability properties of such systems. For that purpose, a uniform set of Differential-Algebraic Equations (DAEs) describing a generic,low-inertia power system has been developed. A full-order, state-of-the-art control scheme of both synchronous and converter-based generators are included, with the latter differentiating between the grid-forming and grid-following mode of operation. Furthermore, the dynamics of transmission lines and loads are captured in the model. Using modal analysis techniques such as participation factors and parameter sensitivity, we determine the most vulnerable segments of the system and investigate the adverse effects of the underlying control interference. Finally, the appropriate directions for improving the system stability margin under different generation portfolios have been proposed.

Publisher

Open Engineering Inc

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3