Abstract
The exact solutions of a system of linear weakly singular Volterra integral equations (VIE) have been a difficult to find. The aim of this paper is to apply reproducing kernel Hilbert space (RKHS) method to find the approximate solutions to this type of systems. At first, we used Taylor's expansion to omit the singularity. From an expansion the given system of linear weakly singular VIE is transform into a system of linear ordinary differential equations (LODEs). The approximate solutions are represent in the form of series in the reproducing kernel space . By comparing with the exact solutions of two examples, we saw that RKHS is a powerful, easy to apply and full efficiency in scientific applications to build a solution without linearization and turbulence or discretization.
Subject
Marketing,Organizational Behavior and Human Resource Management,Strategy and Management,Drug Discovery,Pharmaceutical Science,Pharmacology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献