Preparation and Characterization of Curcumin Loaded Dextrin Sulfate- Chitosan Nanoparticles for Promoting Curcumin Anticancer Activity

Author:

Elbialy Nihal S

Abstract

Curcumin as a natural medicinal agent has been proved to kill cancer cells effectively. However, its biomedical applications have been hindered owing to its poor bioavailability. Many nanoparticulate systems have been introduced to overcome this problem. Among this types polymeric-based nanoparticles which exhibit unique properties allowing their use as a efficient drug carrier. Developing a polymeric- blend nanoparticles will offer a promising nanocarrier with excellent biocompatibility, biodegradability and low immunogencity. In this study, curcumin nano-vehicle has been made up by combining dextren sulfate and chitosan (DSCSNPs). DSCSNPs have been characterized using different techniques. Transmission electron microscopy (TEM) which revealed the spherical, smooth surface of the nano-formulation. Dynamic light scattering (DLS) for measuring DSCSNPs hydrodynamic- diameter. Zeta potential measurements showed nanoparticles high stability. Fourier transform infrared spectroscopy (FTIR) confirmed  successful combination between the two polymers and curcumin loading on naoparticles surface. Curcumin release profile out of DSCSNPs showed high drug release in tumor acidic microenvironment. In vitro cytotoxicity measurements demonstrated that curcumin loaded polymeric nanoparticles (DSCSNPs-Cur) have high therapeutic efficacy against colon (HCT-116) and breast  (MCF-7) cancer cells compared with free curcumin.  DSCSNPs as a combined biopolymers is an excellent candidate for improving curcumin bioavailability  allowing its use as anticancer  agent.

Publisher

CIRWOLRD

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3