Influence of copper nanoparticles on the growth characteristics of tumors in white outbreed rats

Author:

Kachesova P. S.1ORCID,Goroshinskaya I. A.1,Zhukova G. V.1,Shalashnaya E. V.1,Kaplieva I. A.1,Borodulin V. B.2

Affiliation:

1. National Medical Research Centre for Oncology

2. Saratov State Medical University named after V. I. Razumovsky

Abstract

Purpose of the study. To study the effect of copper nanoparticles on the characteristics of the transplanted tumors of rats, as well as to assess the dependence of the effect on the method of administration of nanoparticles.Materials and methods. In experiments on 163 white outbred male rats, 160–200 g, the size and growth rate of transplanted sarcoma 45 and Pliss' lymphosarcoma were determined in dynamics when a suspension of copper nanoparticles in physiological saline was injected intratumorally or intraperitoneally in a total dose of 10 mg/kg. Nanoparticles had a "core-shell" structure with variable diameter in the range of 30–75 nm. Contrary to other researches, we started the exposure to metal nanoparticles only when the tumors had become visible and had grown up to the sizes at which their spontaneous regression was unlikely.Results. In most animals (up to 89 %), significant antitumor effects of copper nanoparticles were obtained up to complete regression of tumors with large volumes. The effects of nanodispersed copper differed in tumors with different histological structures and growth patterns. Experiments on a transplantable, slowly growing sarcoma 45 showed a decrease in the specific tumor growth rate after a single injection of nanoparticles (1.25 mg/kg), a decrease in tumor size could be observed after 4 injections (a total dose of 5 mg/kg). In the case of a rapidly growing tumor model (Pliss' lymphosarcoma), a decrease in tumor growth rates caused by copper nanoparticles occurred at later stages of exposure, after the animals received nanoparticles at a total dose of 5–10 mg/kg. The efficiency depended on the approach of nanoparticles injection.Conclusion. In case of sarcoma 45, intraperitoneal injection of copper nanoparticles was more effective than intratumoral one, while in rats with Pliss' lymphosarcoma intratumoral injection of the nanoparticles had some advantages. The results indicate that nanodispersed copper is a promising antitumor factor. The mechanisms of regression of large transplanted tumors under the influence of copper nanoparticles are discussed.

Publisher

QUASAR, LLC

Subject

Microbiology (medical),Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3