Abstract
This paper evaluates the influence of rainfall on propagated signal at different time exceedance percentages of an average year, over the climate zones of the country. Specifically, it demonstrates critical and non critical signal fade or signal outage time exceedance (0.001% to 1%) for Ku, K, and Ka-band systems in an average year. The study was carried out using meteorological data made available by the Nigerian Meteorological Agency (NiMet) over a period of 10 years (2009–2018). The four climate zones in the country were represented by five (5) locations; Maidugiri (warm desert climate), Sokoto (tropical dry climate), Port Harcourt (tropical monsoon climate), Abuja and Enugu (tropical savanna climate). The parameters were simulated into the International Telecommunications Union Recommended (ITU-R) models for rain attenuation over the tropics and results presented using MatLab and Origin Lab. Results of Ku band propagations showed that only locations in the tropical savanna and tropical monsoon climates experienced total signal outage for time percentage exceedance equal to or below 0.01% for both horizontal and vertical polarizations. At K band propagations, the five locations showed to have experienced signal outage at time exceedance equal to and below 0.01%, almost same was recorded for the Ka-band propagation. It was also observed that horizontal and vertical polarization of signal had slightly different rain attenuation values for the studied bands at the five locations, with horizontal polarization having higher values than vertical polarization.
Publisher
The Korean Space Science Society
Reference27 articles.
1. Abrajano GD, Rainfall attenuation in microwave mesh networks, PhD Dissertation, Nara Institute of Science and Technology (2014).
2. Ajayi GO, Ofoche EBC, Some tropical rainfall rate characteristics at Ile-Ife for microwave and millimeter wave application, J. Clim. Appl. Meteorol. 23, 562-567 (1984). 10.1175/1520-0450(1984)023<0562:STRRCA>2.0.CO;2
3. Chebil J, Rahman TA, Rain rate statistical conversion for the prediction of rain attenuation in Malaysia, Electron. Lett. 35, 1019-1021 (1999). 10.1049/el:19990685
4. Chen CC, Attenuation of electromagnetic radiation by haze, fog, clouds, and rain, A Report prepared for U.S. Air Force Project Rand, RAND-R-1694-PR (1975).
5. Choi YS, Lee JH, Kim JM, Rain attenuation measurements of the Korea sat beacon signal on 12 GHz, Proceedings of the URSI Commission F Open Symposium on Climatic Parameters in Radiowave Propagation Predictions, Ottawa, Canada, 27-29 Apr 1998.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. -;Jurnal Kejuruteraan;2024-07-30