Observational Arc-Length Effect on Orbit Determination for Korea Pathfinder Lunar Orbiter in the Earth-Moon Transfer Phase Using a Sequential Estimation

Author:

Kim Young-RokORCID,Song Young-Joo

Abstract

In this study, the observational arc-length effect on orbit determination (OD) for the Korea Pathfinder Lunar Orbiter (KPLO) in the Earth-Moon Transfer phase was investigated. For the OD, we employed a sequential estimation using the extended Kalman filter and a fixed-point smoother. The mission periods, comprised between the perigee maneuvers (PM) and the lunar orbit insertion (LOI) maneuver in a 3.5 phasing loop of the KPLO, was the primary target. The total period was divided into three phases: launch–PM1, PM1–PM3, and PM3–LOI. The Doppler and range data obtained from three tracking stations [included in the deep space network (DSN) and Korea Deep Space Antenna (KDSA)] were utilized for the OD. Six arc-length cases (24 hrs, 48 hrs, 60 hrs, 3 days, 4 days, and 5 days) were considered for the arc-length effect investigation. In order to evaluate the OD accuracy, we analyzed the position uncertainties, the precision of orbit overlaps, and the position differences between true and estimated trajectories. The maximum performance of 3-day OD approach was observed in the case of stable flight dynamics operations and robust navigation capability. This study provides a guideline for the flight dynamics operations of the KPLO in the trans-lunar phase.

Publisher

The Korean Space Science Society

Subject

General Earth and Planetary Sciences,General Physics and Astronomy

Reference20 articles.

1. Bae J, Song YJ, Kim YR, Kim B, Burn delay analysis of the lunar orbit insertion for Korea Pathfinder Lunar Orbiter, J. Astron. Space Sci. 34, 281-288 (2017). 10.5140/JASS.2017.34.4.281

2. Choi SJ, Whitely R, Condon G, Loucks M, Park JI, et al., Trajectory design for the Korea Pathfinder Lunar Orbiter (KPLO), Proceedings of AAS/AIAA Astrodynamics Specialist Conference, Snowbird, UT, 19-23 Aug 2018 .

3. JPL [Jet Propulsion Laboratory], Deep Space Network services catalog, NASA Jet Propulsion Laboratory, DSN No. 820-100 (2015).

4. Ju G, Bae J, Choi SJ, Lee WB, Lee CJ, New Korean lunar exploration program (KLEP): an introduction to the objectives, approach, architecture, and analytical results, in 64th International Astronautical Congress, Beijing, China, 23-27 Sep 2013.

5. Kim Y, Park SY, Lee E, Kim M, A deep space orbit determination software: overview and event prediction capability, J. Astron. Space Sci. 34, 139-151 (2017). 10.5140/JASS.2017.34.2.139

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3