Abstract
Food security has become a significant issue due to the growing human population. In this case, a significant role is played by agriculture. The essential foods are obtained mainly from plants. Plant diseases can, however, decrease both food production and its quality. Therefore, it is substantial to comprehend the dynamics of plant diseases as they can provide insightful information about the dispersal of plant diseases. In order to investigate the dynamics of plant disease and analyze the effects of strategies of disease control, a mathematical model can be applied. We show that this model provides the non-negative solutions that population dynamics requires. The model was investigated by using the Atangana-Baleanu in Caputo sense (ABC) operator which is symmetrical to the Caputo-Fabrizio (CF) operator with a different function. Whereas the ABC operator uses the generalized Mittag-Leffler function while the CF operator employs the exponential kernel. For the proposed model, we have displayed the local and global stability of a nonendemic and an endemic equilibrium, existence and uniqueness theorems. By applying the fractional Adams-Bashforth-Moulton method, we have implemented numerical solutions to illustrate the theoretical analysis.
Subject
Applied Mathematics,General Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Analytical solution to fractional differential equation arising in thermodynamics;Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería;2024
2. Reliable iterative techniques for solving the KS equation arising in fluid flow;Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería;2024
3. Approximate solution of the fractional differential equation via the natural decomposition method;Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería;2023