Author:
Azman B.,Hussain S.,Azmi N.,Ghani M.,Norlen N.
Abstract
Breast cancer is the most common cancer diagnosed in women, and it is ranked as the second highest cancer with high mortality rate. Breast-cancer recurrence is the cancerous tumor that returned after treatment. Cancer treatments such as radiotherapy are performed mainly to kill cancer cells; however, some cells may have survived and multiply themselves at the same area as the original cancer (local recurrence) or to any other part (distant recurrence). Distant recurrence occurs when cancer cells spread to other parts of the body, most commonly to bone, breast, liver, and lungs. This study employed an Artificial Neural Network of the deep learning approach to predict distant recurrence of breast cancer. Factors that contribute to the risk of recurrence are age, type of surgery performed, tumor size, breast subtype, estrogen receptor, progesterone receptor, undergoing chemotherapy or not, and lymph node involvement. The actual value of distant recurrence is also considered to be a variable. Principal Component Analysis using five and three principal components was conducted. The outcome indicates that the model has accuracy of up to 0.80 using three principal components.
Subject
Applied Mathematics,General Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献